Robotic systems have several subsystems that possess a huge combinatorial configuration space and hundreds or even thousands of possible software and hardware configuration options interacting non-trivially. The configurable parameters can be tailored to target specific objectives, but when incorrectly configured, can cause functional faults. Finding the root cause of such faults is challenging due to the exponentially large configuration space and the dependencies between the robot's configuration settings and performance. This paper proposes CaRE, a method for diagnosing the root cause of functional faults through the lens of causality, which abstracts the causal relationships between various configuration options and the robot's performance objectives. We demonstrate CaRE's efficacy by finding the root cause of the observed functional faults via CaRE and validating the diagnosed root cause, conducting experiments in both physical robots (Husky and Turtlebot 3) and in simulation (Gazebo). Furthermore, we demonstrate that the causal models learned from robots in simulation (simulating Husky in Gazebo) are transferable to physical robots across different platforms (Turtlebot 3).
翻译:机器人系统有几个子系统, 这些子系统拥有巨大的组合配置空间, 以及数以百计甚至数千种可能的软件和硬件配置选项, 以非三角方式互动。 配置参数可以针对特定目标进行定制, 但是如果配置不正确, 可能会造成功能缺陷。 找到这些缺陷的根源具有挑战性, 原因是机器人配置设置和性能之间的依赖性, 以及超大成指数的配置空间。 本文建议 CaRE, 这是一种通过因果关系透镜来诊断功能缺陷根源的方法, 这种方法通过因果关系透视各种配置选项和机器人性能目标之间的因果关系。 我们通过通过 CaRE 找到观察到的功能缺陷的根源, 并验证被诊断的根部, 在物理机器人( Husky 和 Turtlebot 3) 和模拟( Gazebo 3) 中进行实验, 并且我们证明, 从模拟( 在 Gazebo 模拟中模拟的 Husky ) 所学到的因果模型可以转让给不同平台的物理机器人( Turtetbot 3 3) 。 此外, 我们证明CaRE 。