The cloud infrastructure motivates disaggregation of monolithic data stores into components that are assembled together based on an application's workload. This study investigates disaggregation of an LSM-tree key-value store into components that communicate using RDMA. These components separate storage from processing, enabling processing components to share storage bandwidth and space. The processing components scatter blocks of a file (SSTable) across an arbitrary number of storage components and balance load across them using power-of-d. They construct ranges dynamically at runtime to parallelize compaction and enhance performance. Each component has configuration knobs that control its scalability. The resulting component-based system, Nova-LSM, is elastic. It outperforms its monolithic counterparts, both LevelDB and RocksDB, by several orders of magnitude with workloads that exhibit a skewed pattern of access to data.


翻译:云层基础设施激励将单流数据存储按应用程序工作量将单流数据存储分解成根据应用程序工作量组装的组件。 本研究调查将LSM-tree关键值存储分解成使用RDMA进行通信的组件。 这些组件将存储与处理分开,使处理组件能够共享存储带宽和空间。 处理组件将文件( SSTable) 的块块散布在任意数量的存储组件和平衡负荷中, 使用d型功率。 它们动态地在运行时设置范围, 以平行压缩和增强性能。 每个组件都有控制其可缩放性的配置 knobbs。 由此产生的基于组件的系统( Nova- LSM) 具有弹性性。 它比其单层对应系统( 级别DB 和 RocksDB) 的系统( ) 都高出几个数量级, 其工作量显示有扭曲的数据访问模式。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
7+阅读 · 2019年3月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
已删除
将门创投
7+阅读 · 2019年3月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员