Neural image coding represents now the state-of-the-art image compression approach. However, a lot of work is still to be done in the video domain. In this work, we propose an end-to-end learned video codec that introduces several architectural novelties as well as training novelties, revolving around the concepts of adaptation and attention. Our codec is organized as an intra-frame codec paired with an inter-frame codec. As one architectural novelty, we propose to train the inter-frame codec model to adapt the motion estimation process based on the resolution of the input video. A second architectural novelty is a new neural block that combines concepts from split-attention based neural networks and from DenseNets. Finally, we propose to overfit a set of decoder-side multiplicative parameters at inference time. Through ablation studies and comparisons to prior art, we show the benefits of our proposed techniques in terms of coding gains. We compare our codec to VVC/H.266 and RLVC, which represent the state-of-the-art traditional and end-to-end learned codecs, respectively, and to the top performing end-to-end learned approach in 2021 CLIC competition, E2E_T_OL. Our codec clearly outperforms E2E_T_OL, and compare favorably to VVC and RLVC in some settings.


翻译:神经图像编码现在代表了最先进的图像压缩方法。 然而, 在视频领域仍有大量工作要做。 在这项工作中, 我们提议了一个端到端的学习视频代码, 引入一些建筑创新以及培训创新, 围绕适应和关注的概念。 我们的代码是一个内部代码, 与一个框架间代码相匹配。 作为一个建筑创新, 我们提议培训框架间代码模型, 以根据输入视频的分辨率调整动作估计过程。 第二个建筑创新是一个新的神经元块, 将基于分关注的神经网络和DenseNets 的概念结合起来。 最后, 我们提议在回溯时间超配一套解码方多复制参数。 我们通过对前艺术进行校内研究和比较, 我们展示了我们拟议技术在编码收益方面的好处。 我们将我们的代码与 VVC/H.266 和 RLVC, 是一个新的神经元组合, 将基于分关注的神经网络网络和DenseNet的概念结合起来。 最后, 我们提议在回溯时间里, 一套解码中, 我们的C- 和E- Ex- Ex- Ex- 的顶端法中, 我们的顶端- 和最后的代码, 我们的C- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c- c-

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
9+阅读 · 2021年10月26日
Arxiv
5+阅读 · 2021年9月30日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员