In this case study, we describe the design and assembly of a cyber security testbed at Oak Ridge National Laboratory in Oak Ridge, TN, USA. The range is designed to provide agile reconfigurations to facilitate a wide variety of experiments for evaluations of cyber security tools -- particularly those involving AI/ML. In particular, the testbed provides realistic test environments while permitting control and programmatic observations/data collection during the experiments. We have designed in the ability to repeat the evaluations, so additional tools can be evaluated and compared at a later time. The system is one that can be scaled up or down for experiment sizes. At the time of the conference we will have completed two full-scale, national, government challenges on this range. These challenges are evaluating the performance and operating costs for AI/ML-based cyber security tools for application into large, government-sized networks. These evaluations will be described as examples providing motivation and context for various design decisions and adaptations we have made. The first challenge measured end-point security tools against 100K file samples (benignware and malware) chosen across a range of file types. The second is an evaluation of network intrusion detection systems efficacy in identifying multi-step adversarial campaigns -- involving reconnaissance, penetration and exploitations, lateral movement, etc. -- with varying levels of covertness in a high-volume business network. The scale of each of these challenges requires automation systems to repeat, or simultaneously mirror identical the experiments for each ML tool under test. Providing an array of easy-to-difficult malicious activity for sussing out the true abilities of the AI/ML tools has been a particularly interesting and challenging aspect of designing and executing these challenge events.


翻译:在本案例研究中,我们描述了美国TN州Oak Ridge的Oak Ridge国家实验室的网络安全测试的设计和组装。范围旨在提供灵活的重组,以便利对网络安全工具 -- -- 特别是涉及AI/ML的网络安全工具 -- -- 进行评估的多种实验。测试床提供了现实的测试环境,同时允许在实验期间进行控制和方案观测/数据收集。我们设计了能够重复评估的能力,因此可以在以后的时间里对更多的工具进行评估和比较。这个系统可以扩大或降低实验规模。在会议召开时,我们将完成两个全面的、全国性的政府挑战。这些挑战是评估基于AI/ML的网络安全工具在对大型政府规模网络的应用方面的绩效和运行成本。这些评估将描述为各种设计决定和调整的动机和背景。第一个挑战是对照一系列文件类型所选取的100K文件样本(金质和恶意)测量终端安全工具。第二个是评估网络入侵能力在确定各种高水平、高水平的服务器和高水平上,在确定多层次的服务器运动中,这些水平的深度和跨轨运动需要这些高水平的测试。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员