Recently a mechanism called stagnation detection was proposed that automatically adjusts the mutation rate of evolutionary algorithms when they encounter local optima. The so-called $SD-(1+1)EA$ introduced by Rajabi and Witt (GECCO 2020) adds stagnation detection to the classical $(1+1)EA$ with standard bit mutation, which flips each bit independently with some mutation rate, and raises the mutation rate when the algorithm is likely to have encountered local optima. In this paper, we investigate stagnation detection in the context of the $k$-bit flip operator of randomized local search that flips $k$ bits chosen uniformly at random and let stagnation detection adjust the parameter $k$. We obtain improved runtime results compared to the $SD-(1+1)EA$ amounting to a speed-up of up to $e=2.71\dots$ Moreover, we propose additional schemes that prevent infinite optimization times even if the algorithm misses a working choice of $k$ due to unlucky events. Finally, we present an example where standard bit mutation still outperforms the local $k$-bit flip with stagnation detection.
翻译:最近,有人提议了一个称为“停滞检测”的机制,在进化算法遇到本地opima时自动调整进化算法的突变率。Rajabi和Witt(GecCO 2020)推出的所谓的$SD-1+1EA$,将停滞检测率提高到古典的$(1+1EA$),标准位突变率随某些突变率而自动翻转,并当演算法可能遇到本地opima时提高突变率。在本文中,我们调查了在随机随机随机选择的本地随机搜索中以美元比位数翻转而让停滞检测调整参数$k$1+1EA$的情况下出现的停滞检测率。我们获得了更好的运行时间结果,而美元比美元(1+1)的运行率加速,相当于高达$2.71美元。此外,我们提议了额外的计划,防止无限优化时间,即使算法由于不幸运事件而错过了1美元的工作选择。最后,我们举了一个标准位突变率仍然超过本地的1美元位翻转与停滞检测。