Haptic perception is incredibly important for immersive teleoperation of robots, especially for accomplishing manipulation tasks. We propose a low-cost haptic sensing and rendering system, which is capable of detecting and displaying surface roughness. As the robot fingertip moves across a surface of interest, two microphones capture sound coupled directly through the fingertip and through the air, respectively. A learning-based detector system analyzes the data in real-time and gives roughness estimates with both high temporal resolution and low latency. Finally, an audio-based haptic actuator displays the result to the human operator. We demonstrate the effectiveness of our system through experiments and our winning entry in the ANA Avatar XPRIZE competition finals, where impartial judges solved a roughness-based selection task even without additional vision feedback. We publish our dataset used for training and evaluation together with our trained models to enable reproducibility.
翻译:对于机器人的暗中远程操作,特别是对于完成操作任务来说,机敏感知是极为重要的。我们建议建立一个低成本的机密感和制导系统,能够探测和显示表面粗糙度。随着机器人指尖的移动,两个麦克风分别通过指尖和空气捕捉声音。一个基于学习的探测器系统实时分析数据,并以高时间分辨率和低潜度两种方式提供粗糙估计。最后,一个基于音频的助演器向人类操作员展示结果。我们通过实验和我们在ANA Avatar XPRIZE 竞赛决赛中获胜,展示了我们的系统的有效性,在这个决赛中,公正的法官在没有更多视觉反馈的情况下解决了以粗糙性为基础的选择任务。我们出版了用于培训和评估的数据集,以及我们受过训练的模型,以便进行再生。</s>