Current research on users` perspectives of cyber security and privacy related to traditional and smart devices at home is very active, but the focus is often more on specific modern devices such as mobile and smart IoT devices in a home context. In addition, most were based on smaller-scale empirical studies such as online surveys and interviews. We endeavour to fill these research gaps by conducting a larger-scale study based on a real-world dataset of 413,985 tweets posted by non-expert users on Twitter in six months of three consecutive years (January and February in 2019, 2020 and 2021). Two machine learning-based classifiers were developed to identify the 413,985 tweets. We analysed this dataset to understand non-expert users` cyber security and privacy perspectives, including the yearly trend and the impact of the COVID-19 pandemic. We applied topic modelling, sentiment analysis and qualitative analysis of selected tweets in the dataset, leading to various interesting findings. For instance, we observed a 54% increase in non-expert users` tweets on cyber security and/or privacy related topics in 2021, compared to before the start of global COVID-19 lockdowns (January 2019 to February 2020). We also observed an increased level of help-seeking tweets during the COVID-19 pandemic. Our analysis revealed a diverse range of topics discussed by non-expert users across the three years, including VPNs, Wi-Fi, smartphones, laptops, smart home devices, financial security, and security and privacy issues involving different stakeholders. Overall negative sentiment was observed across almost all topics non-expert users discussed on Twitter in all the three years. Our results confirm the multi-faceted nature of non-expert users` perspectives on cyber security and privacy and call for more holistic, comprehensive and nuanced research on different facets of such perspectives.


翻译:目前对用户的网络安全和隐私观点的研究非常活跃,但重点往往更多地放在特定现代设备上,如家庭背景下的移动和智能 IoT 设备;此外,大多数基于小规模的经验研究,如在线调查和访谈;我们努力填补这些研究差距,方法是根据真实世界数据集,非专家用户在连续3年连续6个月(2019年、2020年和2021年的1月和2月)在Twitter上张贴413 985个推文;开发了两个基于机器的叙级工具,以查明413 985个推文;我们分析了这一数据集,以了解非专家用户的网络安全和隐私视角,包括每年的趋势和COVI-19大流行病的影响;我们在数据集中应用了专题建模、情绪分析和对部分推文的定性分析,导致各种有趣的发现;例如,在2021年,非专家用户的网络安全和/或隐私相关议题上的推特增加了54%;在2021年,我们开始开始的OVI-19进行关于网络安全视角,在2019年中也观察到了我们的安全视角。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员