Fundamental differences between materials originate from the unique nature of their constituent chemical elements. Before specific differences emerge according to the precise ratios of elements in a given crystal structure, a material can be represented by the set of its constituent chemical elements. By working at the level of the periodic table, assessment of materials at the level of their phase fields reduces the combinatorial complexity to accelerate screening, and circumvents the challenges associated with composition-level approaches such as poor extrapolation within phase fields, and the impossibility of exhaustive sampling. This early stage discrimination combined with evaluation of novelty of phase fields aligns with the outstanding experimental challenge of identifying new areas of chemistry to investigate, by prioritising which elements to combine in a reaction. Here, we demonstrate that phase fields can be assessed with respect to the maximum expected value of a target functional property and ranked according to chemical novelty. We develop and present PhaseSelect, an end-to-end machine learning model that combines the representation, classification, regression and ranking of phase fields. First, PhaseSelect constructs elemental characteristics from the co-occurrence of chemical elements in computationally and experimentally reported materials, then it employs attention mechanisms to learn representation for phase fields and assess their functional performance. At the level of the periodic table, PhaseSelect quantifies the probability of observing a functional property, estimates its value within a phase field and also ranks a phase field novelty, which we demonstrate with significant accuracy for three avenues of materials applications for high-temperature superconductivity, high-temperature magnetism, and targeted bandgap energy.


翻译:材料之间的根本差异源于其构成化学元素的独特性质。在根据特定晶体结构中各元素的确切比例出现具体差异之前,材料可以由一组组成化学元素来代表。通过在定期表格一级开展工作,在阶段字段一级评估材料会降低组合复杂性,以加快筛选工作,并回避与构成层面方法相关的挑战,如阶段字段内部的推断不力,以及不可能进行详尽的抽样。这一早期阶段的歧视与对阶段字段新颖性的评价结合了查明化学新领域以进行调查的未决实验性挑战,即确定在目标反应中结合各元素的化学新领域。在这里,我们表明,通过在定期表格一级评估阶段材料的预期最大值,并按化学新颖性排序。我们制定和提出“阶段选择”,即将阶段内代表、分类、回归和排序的阶段。首先,阶段选择从计算和实验性材料中共同确定化学元素的新等级的元素特性特征,然后利用同步的轨道机制对目标功能性属性进行最大值评估,并定期评估其阶段的实地和水平。

0
下载
关闭预览

相关内容

专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员