We have developed an unsupervised anomalous sound detection method for machine condition monitoring that utilizes an auxiliary task -- detecting when the target machine is active. First, we train a model that detects machine activity by using normal data with machine activity labels and then use the activity-detection error as the anomaly score for a given sound clip if we have access to the ground-truth activity labels in the inference phase. If these labels are not available, the anomaly score is calculated through outlier detection on the embedding vectors obtained by the activity-detection model. Solving this auxiliary task enables the model to learn the difference between the target machine sounds and similar background noise, which makes it possible to identify small deviations in the target sounds. Experimental results showed that the proposed method improves the anomaly-detection performance of the conventional method complementarily by means of an ensemble.
翻译:我们开发了一种机器状况监测不受监督的异常声音探测方法,该方法使用辅助任务 -- -- 在目标机器运行时检测。首先,我们培训了一种模型,通过使用机器活动标签的正常数据来检测机器活动,然后使用活动检测错误作为给定音剪的异常分,如果我们能够进入推论阶段的地面真实活动标签。如果没有这些标签,则通过在活动检测模型获得的嵌入矢量上的异常分数检测结果计算出异常分数。解决这一辅助任务使模型能够了解目标机器声音和类似背景噪音之间的差异,从而能够识别目标声音中的小偏差。实验结果显示,拟议的方法通过组合手段补充了常规方法的异常检测性能。