In 1968, Golomb and Welch conjectured that there is no perfect Lee codes with radius $r\ge2$ and dimension $n\ge3$. A diameter perfect code is a natural generalization of the perfect code. In 2011, Etzion (IEEE Trans. Inform. Theory, 57(11): 7473--7481, 2011) proposed the following problem: Are there diameter perfect Lee (DPL, for short) codes with diameter greater than four besides the $DPL(3,6)$ code? Later, Horak and AlBdaiwi (IEEE Trans. Inform. Theory, 58(8): 5490--5499, 2012) conjectured that there are no $DPL(n,d)$ codes for dimension $n\ge3$ and diameter $d>4$ except for $(n,d)=(3,6)$. In this paper, we give a counterexample to this conjecture. Moreover, we prove that for $n\ge3$, there is a linear $DPL(n,6)$ code if and only if $n=3,11$.
翻译:1968年,Golomb和Welch预测说,除了$DPL(3,6)美元代码外,没有半径2美元和尺寸3美元的完美的李代码。直径完美代码是完美代码的自然概括。2011年,Etzion (IEEE Trans. info.The. Theory, 57(11):7473-7481,2011年)提出了以下问题:除了$DPL(3,6)美元代码外,是否有直径大于4美元的李代码(DPL,短)?后来,Horak和AlBdaiwi(IEEE Trans. info. Theory, 58(8):5490-5499,2012年)的直径完美代码是完美代码的自然概括。2011年,Etzion(IEEEEEEER Trans.Inform.Information.) Etzion:Etzion:$n\ge3美元和直径>4美元的代码,但$(n,d)=(3,6)美元除外。在本文中,我们对这一参数作了反推解。此外,我们证明,对于美元3,对于美元代码是直径(n\3,如果而且只有美元,则有线值1美元(n6)的代码。