In this article, we consider numerical schemes for polynomial diffusions on the unit ball, which are solutions of stochastic differential equations with a diffusion coefficient of the form $\sqrt{1-|x|^{2}}$. We introduce a semi-implicit Euler--Maruyama scheme with the projection onto the unit ball and provide the $L^{2}$-rate of convergence. The main idea to consider the numerical scheme is the transformation argument introduced by Swart for proving the pathwise uniqueness for some stochastic differential equation with a non-Lipschitz diffusion coefficient.
翻译:在本篇文章中,我们考虑了单球多元扩散的数值方案,这是Stocharic 差分方程式的解决方案,其扩散系数为$sqrt{1- ⁇ x ⁇ 2 ⁇ $。我们引入了半隐含的Euler-Maruyama方案,对单球进行投影,并提供$L ⁇ 2}的趋同率。考虑数字方案的主要想法是Swart为证明某些非Lipschitz扩散系数的随机差分方程式的路径独特性而提出的转换论点。