We consider the problem of coded distributed computing where a large linear computational job, such as a matrix multiplication, is divided into $k$ smaller tasks, encoded using an $(n,k)$ linear code, and performed over $n$ distributed nodes. The goal is to reduce the average execution time of the computational job. We provide a connection between the problem of characterizing the average execution time of a coded distributed computing system and the problem of analyzing the error probability of codes of length $n$ used over erasure channels. Accordingly, we present closed-form expressions for the execution time using binary random linear codes and the best execution time any linear-coded distributed computing system can achieve. It is also shown that there exist \textit{good} binary linear codes that not only attain (asymptotically) the best performance that any linear code (not necessarily binary) can achieve but also are numerically stable against the inevitable rounding errors in practice. We then develop a low-complexity algorithm for decoding Reed-Muller (RM) codes over erasure channels. Our decoder only involves additions, subtractions, {and inversion of relatively small matrices of dimensions at most $\log n+1$}, and enables coded computation over real-valued data. Extensive numerical analysis of the fundamental results as well as RM- and polar-coded computing schemes demonstrate the excellence of the RM-coded computation in achieving close-to-optimal performance while having a low-complexity decoding and explicit construction. The proposed framework in this paper enables efficient designs of distributed computing systems given the rich literature in the channel coding theory.
翻译:我们考虑的是代码分布计算问题,因为大量线性计算任务,如矩阵倍增,被分成一个大线性计算任务,分成一个小任务,用美元(n,k)美元线性代码编码,并完成超过美元分布节点。目标是减少计算工作的平均执行时间。我们提供了编码分布计算系统平均执行时间的特性问题与在删除渠道中使用的长度(美元)代码误差概率分析问题之间的关联。因此,我们使用二进制随机线性代码为执行时间展示了封闭式表达式,而使用任何线性编码分布式计算系统能够实现的最佳执行时间。我们还表明,存在着不仅能够(暂时)实现计算工作平均执行时间的双向线性代码。我们提供了计算计算计算计算计算计算系统平均执行时间(不一定是二进制)和计算错误的误差。我们随后开发了一个低调的计算框架,用于分解Red-Muler(RM)的代码,以及任何线性编码分布式计算系统的最佳执行时间。我们最深的解的计算系统只能进行在线的计算,在纸质化和纸质化的计算结果的计算中进行相对的计算。我们最精确的解算算法的计算结果,在纸面的计算中,在纸质化的计算中,在纸面值的计算中,只能算算化的计算中只能算法化的计算结果的计算结果的计算结果的计算结果的计算中,在比的计算中,在纸面值的计算中进行相对的计算结果的计算结果的计算结果的计算,在比。