We investigate an application of a mathematically robust minimization method -- the gradient method -- to the consistencization problem of a pairwise comparisons (PC) matrix. Our approach sheds new light on the notion of a priority vector and leads naturally to the definition of instant priority vectors. We describe a sample family of inconsistency indicators based on various ways of taking an average value, which extends the inconsistency indicator based on the "$\sup$"- norm. We apply this family of inconsistency indicators both for additive and multiplicative PC matrices to show that the choice of various inconsistency indicators lead to non-equivalent consistencization procedures.
翻译:我们调查一种数学上稳健的最小化方法 -- -- 梯度方法 -- -- 的应用,以综合化为问题,即配对比较矩阵。我们的方法为优先矢量的概念提供了新的启发,并自然地导致对即时优先矢量的定义。我们描述一个抽样的不一致指标组,其根据的是以“$\sup$-规范”为基础的不一致指标。我们将这种不一致指标组适用于添加和倍增的PC矩阵,以表明选择各种不一致指标导致非等同的组合化程序。