The third generation of artificial intelligence (AI) introduced by neuromorphic computing is revolutionizing the way robots and autonomous systems can sense the world, process the information, and interact with their environment. The promises of high flexibility, energy efficiency, and robustness of neuromorphic systems is widely supported by software tools for simulating spiking neural networks, and hardware integration (neuromorphic processors). Yet, while efforts have been made on neuromorphic vision (event-based cameras), it is worth noting that most of the sensors available for robotics remain inherently incompatible with neuromorphic computing, where information is encoded into spikes. To facilitate the use of traditional sensors, we need to convert the output signals into streams of spikes, i.e., a series of events (+1, -1) along with their corresponding timestamps. In this paper, we propose a review of the coding algorithms from a robotics perspective and further supported by a benchmark to assess their performance. We also introduce a ROS (Robot Operating System) toolbox to encode and decode input signals coming from any type of sensor available on a robot. This initiative is meant to stimulate and facilitate robotic integration of neuromorphic AI, with the opportunity to adapt traditional off-the-shelf sensors to spiking neural nets within one of the most powerful robotic tools, ROS.
翻译:第三代人工智能(AI)是由神经变形计算引入的。 第三代人工智能(AI)正在使机器人和自主系统能够感知世界、处理信息并与其环境互动的方式发生革命性的变化。神经变形系统具有高度灵活性、能源效率和稳健性的承诺得到了软件工具的广泛支持,这些软件工具可以模拟神经神经系统,以及硬件集成(神经变形处理器 ) 。然而,尽管在神经变形视觉(基于活动相机)方面做出了努力,但值得指出的是,机器人现有的大多数传感器仍然与神经变形计算(信息被编码成螺旋)内在不兼容。为了便利传统传感器的使用,我们需要将输出信号转换成螺旋流,即一系列事件(+1-1)及其相应的时标。在本文中,我们提议从机器人的角度审查编码算法,并获得评估其性能的基准支持。我们还引入了一个 ROS(Robot操作系统) 工具,用于编码和解码来自任何类型传感器的输入信号,从一个类型的传感器,即一系列事件(即,一系列事件(+1) ),我们提议从一个最强大的机变型的机的神经机感应变的机器人工具中,从而刺激和升级的神经机升级的机的整合,从而促进机的机机机的机的升级的升级的升级改造。