Celebrity Endorsement is one of the most significant strategies in brand communication. Nowadays, more and more companies try to build a vivid characteristic for themselves. Therefore, their brand identity communications should accord with some characteristics as humans and regulations. However, the previous works mostly stop by assumptions, instead of proposing a specific way to perform matching between brands and celebrities. In this paper, we propose a brand celebrity matching model (BCM) based on Natural Language Processing (NLP) techniques. Given a brand and a celebrity, we firstly obtain some descriptive documents of them from the Internet, then summarize these documents, and finally calculate a matching degree between the brand and the celebrity to determine whether they are matched. According to the experimental result, our proposed model outperforms the best baselines with a 0.362 F1 score and 6.3% of accuracy, which indicates the effectiveness and application value of our model in the real-world scene. What's more, to our best knowledge, the proposed BCM model is the first work on using NLP to solve endorsement issues, so it can provide some novel research ideas and methodologies for the following works.
翻译:名人认可是品牌交流中最重要的战略之一。 如今,越来越多的公司试图为自己建立一个生动的特征。 因此, 他们的品牌身份通信应该符合某些人和规则的特征。 但是, 先前的作品大多只是假设, 而不是提出一种具体的方式来匹配品牌和名人。 在本文中, 我们提出了一个基于自然语言处理技术的品牌名人匹配模式( BCM ) 。 根据一个品牌和一个名人, 我们首先从互联网上获得一些描述性文件, 然后总结这些文件, 并最终计算品牌和名人之间的匹配度, 以确定它们是否匹配。 根据实验结果, 我们提议的模型超越了最佳基线, 有0. 362 F1分和6.3%的精准度, 这表明了我们模型在现实世界舞台上的有效性和应用价值。 此外, 据我们所知, 拟议的 BCM 模型是使用NLP解决认可问题的首个工作, 因此它可以为接下来的作品提供一些新的研究想法和方法。