Abstraction is a core tenet of human cognition and communication. When composing natural language instructions, humans naturally evoke abstraction to convey complex procedures in an efficient and concise way. Yet, interpreting and grounding abstraction expressed in NL has not yet been systematically studied in NLP, with no accepted benchmarks specifically eliciting abstraction in NL. In this work, we set the foundation for a systematic study of processing and grounding abstraction in NLP. First, we deliver a novel abstraction elicitation method and present Hexagons, a 2D instruction-following game. Using Hexagons we collected over 4k naturally-occurring visually-grounded instructions rich with diverse types of abstractions. From these data, we derive an instruction-to-execution task and assess different types of neural models. Our results show that contemporary models and modeling practices are substantially inferior to human performance, and that models' performance is inversely correlated with the level of abstraction, showing less satisfying performance on higher levels of abstraction. These findings are consistent across models and setups, confirming that abstraction is a challenging phenomenon deserving further attention and study in NLP/AI research.
翻译:抽象是人类认知和交流的核心原则。 当制定自然语言指令时, 人类自然会以高效和简洁的方式引用抽象, 传递复杂的程序。 然而, 国家实验室尚未系统研究国家实验室中以NLL表示的抽象解释和基础, 没有公认的基准具体导致NL的抽象。 在这项工作中, 我们为在NLP中系统研究处理和定位抽象奠定了基础。 首先, 我们提供了一种新的抽象引导方法, 并展示了六边形, 2D 遵循的游戏。 使用我们收集的4k 以上自然生成的、 具有不同类型抽象内容的直观指令。 我们从这些数据中得出了教学到执行的任务, 并评估了不同类型的神经模型。 我们的结果表明,当代模型和建模做法大大低于人类的绩效, 模型与抽象水平存在反比关系, 显示在更高层次的抽象上表现不尽如人意。 这些发现在模型和设置上是一致的, 证实抽象是一个具有挑战性的现象, 值得进一步的研究和研究。