We introduce Point2Skeleton, an unsupervised method to learn skeletal representations from point clouds. Existing skeletonization methods are limited to tubular shapes and the stringent requirement of watertight input, while our method aims to produce more generalized skeletal representations for complex structures and handle point clouds. Our key idea is to use the insights of the medial axis transform (MAT) to capture the intrinsic geometric and topological natures of the original input points. We first predict a set of skeletal points by learning a geometric transformation, and then analyze the connectivity of the skeletal points to form skeletal mesh structures. Extensive evaluations and comparisons show our method has superior performance and robustness. The learned skeletal representation will benefit several unsupervised tasks for point clouds, such as surface reconstruction and segmentation.
翻译:我们引入了Point2Skeleton, 这是一种从点云中学习骨骼表征的不受监督的方法。 现有的骨骼化方法仅限于管状形状和严格要求水密输入, 而我们的方法旨在为复杂结构产生更普遍的骨骼表征, 并处理点云。 我们的关键想法是利用介质轴变换( MAT) 的洞察力来捕捉原始输入点的内在几何和地貌性质。 我们首先通过学习几何转换来预测一组骨骼点, 然后分析骨骼点与形成骨骼网状结构的连接。 广泛的评估和比较表明我们的方法表现优和稳健。 学到的骨骼表征将有利于点云的几项不受监督的任务, 比如地表重建和分割。