Climate change is a major driver of biodiversity loss, changing the geographic range and abundance of many species. However, there remain significant knowledge gaps about the distribution of species, due principally to the amount of effort and expertise required for traditional field monitoring. We propose an approach leveraging computer vision to improve species distribution modelling, combining the wide availability of remote sensing data with sparse on-ground citizen science data. We introduce a novel task and dataset for mapping US bird species to their habitats by predicting species encounter rates from satellite images, along with baseline models which demonstrate the power of our approach. Our methods open up possibilities for scalably modelling ecosystems properties worldwide.
翻译:气候变化是生物多样性丧失的主要驱动因素,也改变了许多物种的地理分布和数量。然而,仍存在重大的关于物种分布的知识缺口,主要是由于传统现场监测所需的努力和专业知识。我们提出了一种利用计算机视觉改进物种分布模型的方法,将广泛可用的遥感数据与稀疏的公民科学数据结合起来。我们介绍了一个对美国鸟类物种进行栖息地映射的新任务和数据集,预测物种遭遇率与卫星图像的相关性,并展示了基准模型以证明我们方法的有效性。我们的方法为全球生态系统属性的可扩展建模打开了可能性。