Recently, the sparse vector code (SVC) is emerging as a promising solution for short-packet transmission in massive machine type communication (mMTC) as well as ultra-reliable and low-latency communication (URLLC). In the SVC process, the encoding and decoding stages are jointly modeled as a standard compressed sensing (CS) problem. Hence, this paper aims at improving the decoding performance of SVC by optimizing the spreading matrix (i.e. measurement matrix in CS). To this end, two greedy algorithms to minimize the mutual coherence value of the spreading matrix in SVC are proposed. Specially, for practical applications, the spreading matrices are further required to be bipolar whose entries are constrained as +1 or -1. As a result, the optimized spreading matrices are highly efficient for storage, computation, and hardware realization. Simulation results reveal that, compared with the existing work, the block error rate (BLER) performance of SVC can be improved significantly with the optimized spreading matrices.
翻译:最近,稀有矢量代码(SVC)正在成为大规模机器类型通信以及超可靠和低时空通信中短包装传输的有希望的解决办法。在SVC过程中,编码和解码阶段被联合模拟为标准压缩感(CS)问题。因此,本文件旨在通过优化扩展矩阵(即CS中的测量矩阵)来改进SVC的解码性能。为此,提出了两种贪婪的算法,以尽量减少SVC中扩散矩阵的相互一致性值。特别是,为了实际应用,扩展矩阵还需要双极化,其条目受限制为+1或-1。结果,优化的扩展矩阵对于储存、计算和硬件实现非常高效。模拟结果表明,与现有工作相比,SVC的块错误率(LVR)性能可以通过优化扩散矩阵大大改进。