The Gaussian kernel is a very popular kernel function used in many machine-learning algorithms, especially in support vector machines (SVM). For nonlinear training instances in machine learning, it often outperforms polynomial kernels in model accuracy. We use Gaussian kernel profoundly in formulating nonlinear classical SVM. In the recent research, P. Rebentrost et.al. discuss a very elegant quantum version of least square support vector machine using the quantum version of polynomial kernel, which is exponentially faster than the classical counterparts. In this paper, we have demonstrated a quantum version of the Gaussian kernel and analyzed its complexity in the context of quantum SVM. Our analysis shows that the computational complexity of the quantum Gaussian kernel is O(\epsilon^(-1)logN) with N-dimensional instances and \epsilon with a Taylor remainder error term |R_m (\epsilon^(-1) logN)|.


翻译:Gaussian 内核是许多机器学习算法中使用的一个非常受欢迎的内核函数, 特别是在支持矢量机( SVM) 中。 对于机器学习的非线性培训实例, 它往往在模型精度方面优于多圆内核。 我们使用高森内核来深度制定非线性古典 SVM。 在最近的研究中, P. Rebentrost et.al. 讨论一个非常优雅的量子版的最平方支持矢量机, 使用比古典的对口机( SVM ) 更快的量子版本 。 在本文中, 我们展示了高森内核的量值版本, 并分析了其在量子 SVM 背景下的复杂性 。 我们的分析表明, 量高内核的计算复杂性是O( epsilon) 和 N- 维实例 和 Taylor 剩余错误术语 {R_m (\ epsilon (-1 logN) 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员