The fractional Laplacian has been strongly studied during past decades. In this paper we present a different approach for the associated Dirichlet problem, using recent deep learning techniques. In fact, recently certain parabolic PDEs with a stochastic representation have been understood via neural networks, overcoming the so-called curse of dimensionality. Among these equations one can find parabolic ones in $\mathbb{R}^d$ and elliptic in a bounded domain $D \subset \mathbb{R}^d$. In this paper we consider the Dirichlet problem for the fractional Laplacian with exponent $\alpha \in (1,2)$. We show that its solution, represented in a stochastic fashion can be approximated using deep neural networks. We also check that this approximation does not suffer from the curse of dimensionality.
翻译:在过去几十年里,对分数拉普拉西安语进行了认真的研究。 在本文中, 我们使用最近的深层学习技巧, 展示了与此相关的 Dirichlet 问题的不同方法 。 事实上, 最近通过神经网络理解了某些具有随机代表的抛物线 PDE, 克服了所谓的维度诅咒。 在这些方程式中, 人们可以找到以 $\ mathbb{R ⁇ d$ 和 ellliptical 写成的 $D\ subset\ mathbb{R ⁇ d$ 。 在本文中, 我们考虑的是 以 $\ alpha = $ ( 1, 2) 的分数拉普莱奇语 的 Dirichlet 问题 。 我们展示了它以分数方式代表的解物质的解决方案可以使用深层神经网络进行近似。 我们还检查这一近似值是否受维度诅咒的影响 。