An algorithm for reversible logic synthesis is proposed. The task is, for given $n$-bit substitution map $P_n: \{0,1\}^n \rightarrow \{0,1\}^n$, to find a sequence of reversible logic gates that implements the map. The gate library adopted in this work consists of multiple-controlled Toffoli gates denoted by $C^m\!X$, where $m$ is the number of control bits that ranges from 0 to $n-1$. Controlled gates with large $m \,\,(>2)$ are then further decomposed into $C^0\!X$, $C^1\!X$, and $C^2\!X$ gates. A primary concern in designing the algorithm is to reduce the use of $C^2\!X$ gate (also known as Toffoli gate) which is known to be universal. The main idea is to view an $n$-bit substitution map as a rank-$2n$ tensor and to transform it such that the resulting map can be written as a tensor product of a rank-($2n-2$) tensor and the $2\times 2$ identity matrix. Let $\mathcal{P}_n$ be a set of all $n$-bit substitution maps. What we try to find is a size reduction map $\mathcal{A}_{\rm red}: \mathcal{P}_n \rightarrow \{P_n: P_n = P_{n-1} \otimes I_2\}$. One can see that the output $P_{n-1} \otimes I_2$ acts nontrivially on $n-1$ bits only, meaning that the map to be synthesized becomes $P_{n-1}$. The size reduction process is iteratively applied until it reaches tensor product of only $2 \times 2$ matrices.


翻译:提出了可逆逻辑合成的算法 。 任务在于, 对于给定的 $- bit 替代地图$P_n : $0, 1\n\n\rightrow $0, 1 ⁇ n\rightrow $0, 1 ⁇ n$, 寻找执行地图的可逆逻辑门序列。 这项工作中采用的大门库由多个受控制的 Toffoli 门组成, 由 $C\m\\\\! X$表示的 Toffoli 门( 也称为 Toffoli 门), 其控制位数从 0 到 $-1 美元不等。 对于大 $2\\\\\\\\\\\\\\\\\\\\\ > $的控制门, 然后将进一步变换成$ $2\\\\\\\\\\\\\\\ p\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

《概率统计及其在计算中的应用》书册,384页pdf
专知会员服务
45+阅读 · 2021年1月7日
【干货书】Python机器学习及金融应用,384页pdf
专知会员服务
134+阅读 · 2021年1月1日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
61+阅读 · 2020年3月4日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
已删除
将门创投
7+阅读 · 2018年12月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
0+阅读 · 2021年9月9日
VIP会员
相关资讯
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
已删除
将门创投
7+阅读 · 2018年12月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员