Nonlinear control methodologies have successfully realized stable human-like walking on powered prostheses. However, these methods are typically restricted to model independent controllers due to the unknown human dynamics acting on the prosthesis. This paper overcomes this restriction by introducing the notion of a separable subsystem control law, independent of the full system dynamics. By constructing an equivalent subsystem, we calculate the control law with local information. We build a subsystem model of a general open-chain manipulator to demonstrate the control method's applicability. Employing these methods for an amputee-prosthesis model, we develop a model dependent prosthesis controller that relies solely on measurable states and inputs but is equivalent to a controller developed with knowledge of the human dynamics and states. We demonstrate the results through simulating an amputee-prosthesis system and show the model dependent prosthesis controller performs identically to a feedback linearizing controller based on the whole system, confirming the equivalency.
翻译:非线性控制方法成功地实现了使用有动力假肢的类似人类的稳定行走。 但是,这些方法一般限于模型独立的控制器,因为假肢上的人类动态不明。 本文通过引入独立于整个系统动态的分离子系统控制法的概念克服了这一限制。 我们用本地信息来计算一个等效子系统的控制法。 我们用一个普通开关操纵器的子系统模型来显示控制方法的适用性。 将这些方法用于截肢假肢模型, 我们开发一个模型依赖性假肢控制器, 它完全依赖可测量的状态和投入, 但却相当于一个掌握人类动态和状态知识的控制器。 我们通过模拟截肢假肢系统来展示结果, 并展示模型依赖性假肢控制器与基于整个系统的线性反馈控制器的功能相同, 确认对等值 。