Multi-document summaritazion is the process of taking multiple texts as input and producing a short summary text based on the content of input texts. Up until recently, multi-document summarizers are mostly supervised extractive. However, supervised methods require datasets of large, paired document-summary examples which are rare and expensive to produce. In 2018, an unsupervised multi-document abstractive summarization method(Meansum) was proposed by Chu and Liu, and demonstrated competitive performances comparing to extractive methods. Despite good evaluation results on automatic metrics, Meansum has multiple limitations, notably the inability of dealing with multiple aspects. The aim of this work was to use Multi-Aspect Masker(MAM) as content selector to address the issue with multi-aspect. Moreover, we propose a regularizer to control the length of the generated summaries. Through a series of experiments on the hotel dataset from Trip Advisor, we validate our assumption and show that our improved model achieves higher ROUGE, Sentiment Accuracy than the original Meansum method and also beats/ comprarable/close to the supervised baseline.


翻译:多文件总和是将多种文本作为投入和根据输入文本内容制作简短摘要文本的过程。直到最近,多文件摘要大多受到监督,但监督方法需要制作稀有和昂贵的大型、配对文件摘要实例的数据集。2018年,朱和刘提出了一种未经监督的多文件抽象总结方法(Meansum),并展示了与采掘方法相比的竞争性性能。尽管在自动计量方法上取得了良好的评价结果,但Seyum有多种局限性,特别是无法处理多个方面。这项工作的目的是使用多光谱显示器(MAM)作为内容选择器,用多层图解问题。此外,我们提议一个正规化器来控制生成摘要的长度。通过由Trip顾问对酒店数据集进行的一系列实验,我们验证了我们的假设,并表明我们改进的模型比原始方法更高、更精准性、比原始方法更能/更准/更接近受监督基线。

0
下载
关闭预览

相关内容

Notability 是一款功能强大的备注记录软件,可用于注释文稿、草拟想法、录制演讲、记录备注等。它将键入、手写、录音和照片结合在一起,便于您根据需要创建相应的备注。在 iCloud 的支持下,您的备注在 iPad、iPhone 和 Mac 上将始终可用。晨昏相伴,如影随行。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Top
微信扫码咨询专知VIP会员