Householder orthogonalization plays an important role in numerical linear algebra. It attains perfect orthogonality regardless of the conditioning of the input. However, in the context of a non-standard inner product, it becomes difficult to apply Householder orthogonalization due to the lack of an initial orthogonal basis. We propose strategies to overcome this obstacle and discuss algorithms and variants of Householder orthogonalization with a non-standard inner product. Rounding error analysis and numerical experiments demonstrate that our approach is numerically stable.
翻译:住户正向化在数字线性代数中起着重要作用,无论输入的附加条件如何,它都能达到完美的正向化,然而,在非标准内部产品中,由于缺乏初始正向基础,因此难以应用住户正向化。我们提出了克服这一障碍的战略,并与非标准内部产品讨论住户正向化的算法和变体。四舍五入的错误分析和数字实验表明,我们的方法在数字上是稳定的。