Overparameterization in deep learning is powerful: Very large models fit the training data perfectly and yet generalize well. This realization brought back the study of linear models for regression, including ordinary least squares (OLS), which, like deep learning, shows a "double descent" behavior. This involves two features: (1) The risk (out-of-sample prediction error) can grow arbitrarily when the number of samples $n$ approaches the number of parameters $p$, and (2) the risk decreases with $p$ at $p>n$, sometimes achieving a lower value than the lowest risk at $p<n$. The divergence of the risk for OLS at $p\approx n$ is related to the condition number of the empirical covariance in the feature set. For this reason, it can be avoided with regularization. In this work we show that it can also be avoided with a PCA-based dimensionality reduction. We provide a finite upper bound for the risk of the PCA-based estimator. This result is in contrast to recent work that shows that a different form of dimensionality reduction -- one based on the population covariance instead of the empirical covariance -- does not avoid the divergence. We connect these results to an analysis of adversarial attacks, which become more effective as they raise the condition number of the empirical covariance of the features. We show that OLS is arbitrarily susceptible to data-poisoning attacks in the overparameterized regime -- unlike the underparameterized regime -- and that regularization and dimensionality reduction improve the robustness.


翻译:在深层学习中,过度衡量是十分强大的:非常大的模型完全适合培训数据,但又非常笼统。这一实现使线性模型的研究回溯到回归模型,包括普通的最小正方(OLS),这与深层学习一样,表明一种“双向”行为。这涉及两个特点:(1)当样本数量接近参数数量时,风险(无表象预测错误)可能会任意增加(在Sample预测错误),当美元接近参数数量时,以美元计价,以及(2)风险以美元计价,以美元计价,降低风险,有时以美元计价,低于最低风险,以美元计价。OLS在$p<n$方面的风险差异与功能集中的经验差异值有关。为此,可以通过正规化来避免风险。在这项工作中,如果以常设仲裁机构为基础降低维度,则可以避免风险。我们为基于常设仲裁机构估算标准的风险提供了一个有限的上限。这与最近的工作形成对比,表明不同形式的维度减少形式减少,以$p<n$n$为美元计算。一个基于不透明度的 Opallnalityalityalityalityalityality,而不是基于人口常态的常态,从而避免了袭击的不透明性变化,从而使得这些常态性使这些常态性使这些常态与常态与常态与常态性变变变化,我们变化,从而使得这些常态性分析提高了了这些常态性使这些常态性使这些常态性使这些常态数据与常态性分析成为了比。

0
下载
关闭预览

相关内容

在数学,统计学和计算机科学中,尤其是在机器学习和逆问题中,正则化是添加信息以解决不适定问题或防止过度拟合的过程。 正则化适用于不适定的优化问题中的目标函数。
专知会员服务
50+阅读 · 2020年12月14日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月12日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员