Cellular automata (CAs) are computational models exhibiting rich dynamics emerging from the local interaction of cells arranged in a regular lattice. Graph CAs (GCAs) generalise standard CAs by allowing for arbitrary graphs rather than regular lattices, similar to how Graph Neural Networks (GNNs) generalise Convolutional NNs. Recently, Graph Neural CAs (GNCAs) have been proposed as models built on top of standard GNNs that can be trained to approximate the transition rule of any arbitrary GCA. Existing GNCAs are anisotropic in the sense that their transition rules are not equivariant to translation, rotation, and reflection of the nodes' spatial locations. However, it is desirable for instances related by such transformations to be treated identically by the model. By replacing standard graph convolutions with E(n)-equivariant ones, we avoid anisotropy by design and propose a class of isotropic automata that we call E(n)-GNCAs. These models are lightweight, but can nevertheless handle large graphs, capture complex dynamics and exhibit emergent self-organising behaviours. We showcase the broad and successful applicability of E(n)-GNCAs on three different tasks: (i) pattern formation, (ii) graph auto-encoding, and (iii) simulation of E(n)-equivariant dynamical systems.
翻译:单元格自动自动分析器( CA) 是计算模型, 显示在固定的 挂牌 中安排的单元格的本地互动中产生的丰富动态。 图形 CA( GCAs) 通过允许任意的图形而不是普通的 latices 来概括标准 CAS( 普通的 lattic ) 标准 CA, 类似于图形神经网络( GNNS) 普通的 革命性 NNPs 。 最近, 图形神经 CA( GNCAs) 被提议为建在标准 GNNNN( ) 之上的模型, 可以训练以近似任何任意的 GCA 的过渡规则。 现有的 GNCAs 是反异同的, 其含义是, 它们的过渡规则不是对节点空间位置的翻译、 旋转和反映射等的等同标准 CA。 然而, 与这种转换相关的实例最好与模型一样得到同样的对待。 通过用 E( n) QQACA ( 我们用设计来避免不动不动, 提出一种叫做 E- gotrotomat ) 的系统。 这些模型是轻量的, 但是可以处理大的图形- groom 的自我演化的自我演化过程的 和 。