Artificial neural networks are often used to identify features of crop plants. However, training their models requires many annotated images, which can be expensive and time-consuming to acquire. Procedural models of plants, such as those developed with Lindenmayer-systems (L-systems) can be created to produce visually realistic simulations, and hence images of plant simulations, where annotations are implicitly known. These synthetic images can either augment or completely replace real images in training neural networks for phenotyping tasks. In this paper, we systematically vary amounts of real and synthetic images used for training in both maize and canola to better understand situations where synthetic images generated from L-systems can help prediction on real images. This work also explores the degree to which realism in the synthetic images improves prediction. We have five different variants of a procedural canola model (these variants were created by tuning the realism while using calibration), and the deep learning results showed how drastically these results improve as the canola synthetic images are made to be more realistic. Furthermore, we see how neural network predictions can be used to help calibrate L-systems themselves, creating a feedback loop.
翻译:暂无翻译