We study the class of reach-avoid dynamic games in which multiple agents interact noncooperatively, and each wishes to satisfy a distinct target condition while avoiding a failure condition. Reach-avoid games are commonly used to express safety-critical optimal control problems found in mobile robot motion planning. While a wide variety of approaches exist for these motion planning problems, we focus on finding time-consistent solutions, in which planned future motion is still optimal despite prior suboptimal actions. Though abstract, time consistency encapsulates an extremely desirable property: namely, time-consistent motion plans remain optimal even when a robot's motion diverges from the plan early on due to, e.g., intrinsic dynamic uncertainty or extrinsic environment disturbances. Our main contribution is a computationally-efficient algorithm for multi-agent reach-avoid games which renders time-consistent solutions. We demonstrate our approach in two- and three-player simulated driving scenarios, in which our method provides safe control strategies for all agents.
翻译:我们研究的是“达到-避免”的动态游戏,其中多个代理器不合作地相互作用,每个代理器都希望满足一个不同的目标条件,同时避免失败条件。“达到-避免”游戏通常用来表达移动机器人运动规划中发现的安全临界最佳控制问题。虽然存在解决这些动作规划问题的各种办法,但我们侧重于寻找时间一致的解决办法,在这种办法中,计划的未来运动尽管在前几次最优的行动中仍然最优化。虽然时间一致性包含了一种非常可取的属性:即时间一致的动作计划仍然是最佳的,即使机器人的动作在早期由于内在动态不确定性或极端环境干扰而与计划不同。我们的主要贡献是多试剂接触-无法达到的游戏的计算效率算法,这种算法使得时间一致的解决办法。我们用两个和三个玩家模拟的驾驶方案展示了我们的方法,其中我们的方法为所有代理器提供了安全控制策略。