Dynamic recommendation is essential for modern recommender systems to provide real-time predictions based on sequential data. In real-world scenarios, the popularity of items and interests of users change over time. Based on this assumption, many previous works focus on interaction sequences and learn evolutionary embeddings of users and items. However, we argue that sequence-based models are not able to capture collaborative information among users and items directly. Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations of both items and users at the same time. We propose three update mechanisms: zero-order 'inheritance', first-order 'propagation', and second-order 'aggregation', to represent the impact on a user or item when a new interaction occurs. Based on them, we update related user and item embeddings simultaneously when interactions occur in turn, and then use the latest embeddings to make recommendations. Extensive experiments conducted on three public datasets show that DGCF significantly outperforms the state-of-the-art dynamic recommendation methods up to 30. Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
翻译:动态建议是现代推荐人系统根据相继数据提供实时预测的关键。 在现实世界情景中, 用户项目和利益随时间变化而变化。 基于这一假设, 许多先前的工作侧重于互动序列, 并学习用户和项目的进化嵌入。 但我们认为, 以序列为基础的模型无法直接捕捉用户和项目之间的协作信息。 我们在此提议动态图表合作过滤( DGCF), 这是一个利用动态图形来同时捕捉项目和用户的协作和相继关系的新框架。 我们提议了三种更新机制: 零顺序“ 继承” 、 第一顺序“ 调整” 和第二顺序“ 汇总”, 以代表发生新互动时对用户或项目的影响。 在此基础上, 我们更新相关用户和项目在互动发生时同时嵌入, 然后使用最新的嵌入来提出建议。 在三个公共数据集上进行的广泛实验显示, DGCF 大大优于30年前的状态动态建议方法。 我们的方法在合作性重复时, 实现更高的性表现。