Dialogue systems without consistent responses are not fascinating. In this study, we build a dialogue system that can respond based on a given character setting (persona) to bring consistency. Considering the trend of the rapidly increasing scale of language models, we propose an approach that uses prompt-tuning, which has low learning costs, on pre-trained large-scale language models. The results of automatic and manual evaluations in English and Japanese show that it is possible to build a dialogue system with more natural and personalized responses using less computational resources than fine-tuning.
翻译:没有一致反应的对话系统并不令人着迷。在这项研究中,我们建立了一个对话系统,可以基于特定性格设置(人)来作出反应,以取得一致性。考虑到语言模式规模迅速扩大的趋势,我们建议采用一种方法,在经过培训的大型语言模式上采用快速调校,这种调校费用较低,而且学习费用较低。 英文和日文的自动和人工评价结果表明,利用比微调更少的计算资源来建立更自然和个性化的反应的对话系统是可能的。