This study investigates the use of local optima network (LON) analysis, a derivative of the fitness landscape of candidate solutions, to characterise and visualise the neural architecture space. The search space of feedforward neural network architectures with up to three layers, each with up to 10 neurons, is fully enumerated by evaluating trained model performance on a selection of data sets. Extracted LONs, while heterogeneous across data sets, all exhibit simple global structures, with single global funnels in all cases but one. These results yield early indication that LONs may provide a viable paradigm by which to analyse and optimise neural architectures.
翻译:本研究调查了当地Popima网络分析的使用情况,这是候选解决方案的健身环境的衍生物,旨在描述和直观神经结构空间的特征。 最多有三个层的进料神经网络结构的搜索空间,每个层有多达10个神经元,通过对一组数据集的经过培训的模型性能进行评估而充分列举。 提取的LONs虽然各数据集各不相同,但都展示了简单的全球结构,除一个外,所有情况都有单一的全球漏斗。 这些结果早期显示LONs可以提供一个可行的范例,据以分析和优化神经结构。