A \textit{functional $k$-batch} code of dimension $s$ consists of $n$ servers storing linear combinations of $s$ linearly independent information bits. Any multiset request of size $k$ of linear combinations (or requests) of the information bits can be recovered by $k$ disjoint subsets of the servers. The goal under this paradigm is to find the minimum number of servers for given values of $s$ and $k$. A recent conjecture states that for any $k=2^{s-1}$ requests the optimal solution requires $2^s-1$ servers. This conjecture is verified for $s\leq 5$ but previous work could only show that codes with $n=2^s-1$ servers can support a solution for $k=2^{s-2} + 2^{s-4} + \left\lfloor \frac{ 2^{s/2}}{\sqrt{24}} \right\rfloor$ requests. This paper reduces this gap and shows the existence of codes for $k=\lfloor \frac{2}{3}2^{s-1} \rfloor$ requests with $n=2^s-1$ servers. Another construction in the paper provides a code with $n=2^{s+1}-2$ servers and $k=2^{s}$ requests, which is an optimal result. %We provide some bounds on the minimum number of servers for functional $k$-batch codes. These constructions are mainly based on Hadamard codes and equivalently provide constructions for \textit{parallel Random I/O (RIO)} codes.


翻译:\ textit{ 功能 $k$- batch} 维度代码 $3 美元 。 最近的假设是, 任何 $2=2 ⁇ s-1} 的服务器都需要最佳解决方案 $2$-1$ 美元 。 此配置为 $2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月10日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员