Gaussian process state-space model (GPSSM) is a fully probabilistic state-space model that has attracted much attention over the past decade. However, the outputs of the transition function in the existing GPSSMs are assumed to be independent, meaning that the GPSSMs cannot exploit the inductive biases between different outputs and lose certain model capacities. To address this issue, this paper proposes an output-dependent and more realistic GPSSM by utilizing the well-known, simple yet practical linear model of coregionalization (LMC) framework to represent the output dependency. To jointly learn the output-dependent GPSSM and infer the latent states, we propose a variational sparse GP-based learning method that only gently increases the computational complexity. Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
翻译:Gaussian进程状态空间模型(GPSSM)是一个完全概率性的国家空间模型(GPSSM),在过去10年中引起了人们的极大关注。然而,现有全球定位系统系统过渡功能的输出被认为是独立的,这意味着GPSM不能利用不同产出之间的感应偏差,失去某些模型能力。为解决这一问题,本文件提出一个依靠产出的、更现实的GPSM,方法是利用众所周知的、简单而实用的共同区域化框架线性模型(LMC)来代表产出依赖性。为了共同学习依赖产出的GPSM,并推断潜在状态,我们提出了一种差异性分散的基于GP的学习方法,该方法只能轻轻地增加计算复杂性。关于合成和真实数据集的实验表明,在学习和推断性能方面,依赖产出的GPSMSMM的优势在于产出。