This paper investigates the effects of plasticity on the effective fracture toughness. A layered material is considered as a modelling system. An elastic-plastic phase-field model and a surfing boundary condition are used to study how the crack propagates throughout the material and the evolution of the effective toughness as a function of the layer angle. We first study three idealized situations, where only one property among fracture toughness, Young's modulus and yield strength is heterogeneous whereas the others are uniform. We observe that in the case of toughness and strength heterogeneity, the material exhibits anomalous isotropy: the effective toughness is equal to the largest of the point-wise values for any layer angle except when the layers are parallel to the macroscopic direction of propagation. As the layer angle decreases, the crack propagates along the brittle-to-tough interfaces, whereas it goes straight when the layers have different yield strength but uniform toughness. We find that smooth deflections in the crack path do not induce any overall toughening and that the effective toughness is not proportional to either the cumulated fracture energy or the cumulated plastic work. In the case of elastic heterogeneity, the material is anisotropic in the sense of the effective toughness, as the latter varies as a function of the layer angle. Four toughening mechanisms are active: stress fluctuations, crack renucleation, plastic dissipation and plastic blunting. Finally, we consider a layered medium comprised of compliant-tough-weak and stiff-brittle-strong phases, as it is the case for many structural composites. We observe a transition from an interface-dominated to a plasticity-dominated failure regime, as the phase constituents become more ductile. The material is anisotropic in the sense of the effective toughness.
翻译:本文调查了可塑性对有效断裂坚硬度的影响。 一层材料被视为一个建模系统。 一种弹性塑料相位模型和冲浪边界条件被用来研究裂缝在整个材料中是如何扩散的, 以及有效硬度的演进, 作为层角的函数。 我们首先研究三种理想化的情况, 骨折坚硬度中只有一个属性, 杨的模量和产量强度是不同的, 而其他的则很不一样。 我们发现, 在硬性和强度变异性塑性的情况下, 材料出现反常性: 有效的硬性硬性结构模型与任何层角值的最大值值值相等, 除非层层与传播的宏观方向平行。 随着层角角下降, 裂痕会沿着骨质到牙尖的界面扩散, 而当层的产量和强度不同时, 它会保持直线性。 我们发现, 螺旋性变色的软性机制不会引起任何整体的硬性硬性反应, 有效的硬性硬性硬性结构是 硬性变硬性变的硬性结构, 成为了硬性变硬性变硬性变的硬性变硬性变硬性结构, 。 硬性变的硬性变硬性变硬性变硬性变硬性变硬性变硬性变的硬性变硬性变硬性变的硬性变硬性变硬性变的硬性变的体, 成为了硬性变的硬性变的硬性变变的硬性变的体,, 硬性变的体, 性变形的体, 变形的硬性变形的体, 性变形性变变变变形的变变的变变变变变变的变的变变的变的变的变的变的变变的变的变的变的变形的变的变变的变的变的变的变的变的变的变形的变形性变形性变形, 的变形, 的变的变形的变的变的变的变的变的变的变的变的变的变的变的变的变的变形的变形变的变的变的变形体, 的变形体, 的变的变的变形体, 的变形变形