This paper investigates the effects of plasticity on the effective fracture toughness. A layered material is considered as a modelling system. An elastic-plastic phase-field model and a surfing boundary condition are used to study how the crack propagates throughout the material and the evolution of the effective toughness as a function of the layer angle. We first study three idealized situations, where only one property among fracture toughness, Young's modulus and yield strength is heterogeneous whereas the others are uniform. We observe that in the case of toughness and strength heterogeneity, the material exhibits anomalous isotropy: the effective toughness is equal to the largest of the point-wise values for any layer angle except when the layers are parallel to the macroscopic direction of propagation. As the layer angle decreases, the crack propagates along the brittle-to-tough interfaces, whereas it goes straight when the layers have different yield strength but uniform toughness. We find that smooth deflections in the crack path do not induce any overall toughening and that the effective toughness is not proportional to either the cumulated fracture energy or the cumulated plastic work. In the case of elastic heterogeneity, the material is anisotropic in the sense of the effective toughness, as the latter varies as a function of the layer angle. Four toughening mechanisms are active: stress fluctuations, crack renucleation, plastic dissipation and plastic blunting. Finally, we consider a layered medium comprised of compliant-tough-weak and stiff-brittle-strong phases, as it is the case for many structural composites. We observe a transition from an interface-dominated to a plasticity-dominated failure regime, as the phase constituents become more ductile. The material is anisotropic in the sense of the effective toughness.


翻译:本文调查了可塑性对有效断裂坚硬度的影响。 一层材料被视为一个建模系统。 一种弹性塑料相位模型和冲浪边界条件被用来研究裂缝在整个材料中是如何扩散的, 以及有效硬度的演进, 作为层角的函数。 我们首先研究三种理想化的情况, 骨折坚硬度中只有一个属性, 杨的模量和产量强度是不同的, 而其他的则很不一样。 我们发现, 在硬性和强度变异性塑性的情况下, 材料出现反常性: 有效的硬性硬性结构模型与任何层角值的最大值值值相等, 除非层层与传播的宏观方向平行。 随着层角角下降, 裂痕会沿着骨质到牙尖的界面扩散, 而当层的产量和强度不同时, 它会保持直线性。 我们发现, 螺旋性变色的软性机制不会引起任何整体的硬性硬性反应, 有效的硬性硬性硬性结构是 硬性变硬性变的硬性结构, 成为了硬性变硬性变硬性变的硬性变硬性变硬性结构, 。 硬性变的硬性变硬性变硬性变硬性变硬性变硬性变硬性变的硬性变硬性变硬性变的硬性变硬性变硬性变的硬性变的体, 成为了硬性变的硬性变的硬性变变的硬性变的体,, 硬性变的体, 性变形的体, 变形的硬性变形的体, 性变形性变变变变形的变变的变变变变变变的变的变变的变的变的变的变的变变的变的变的变的变形的变的变变的变的变的变的变的变的变的变形的变形性变形性变形, 的变形, 的变的变形的变的变的变的变的变的变的变的变的变的变的变的变的变的变形的变形变的变的变的变形体, 的变形体, 的变的变的变形体, 的变形变形

0
下载
关闭预览

相关内容

应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关VIP内容
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员