Almost perfect nonlinear (APN) functions play an important role in the design of block ciphers as they offer the strongest resistance against differential cryptanalysis. Despite more than 25 years of research, only a limited number of APN functions are known. In this paper, we show that a recent construction by Taniguchi provides at least $\frac{\varphi(m)}{2}\left\lceil \frac{2^m+1}{3m} \right\rceil$ inequivalent APN functions on the finite field with ${2^{2m}}$ elements, where $\varphi$ denotes Euler's totient function. This is a great improvement of previous results: for even $m$, the best known lower bound has been $\frac{\varphi(m)}{2}\left(\lfloor \frac{m}{4}\rfloor +1\right)$, for odd $m$, there has been no such lower bound at all. Moreover, we determine the automorphism group of Taniguchi's APN functions.
翻译:几乎完全的非线性( APN) 函数在区块密码设计中起着重要作用, 因为它们提供了对不同加密分析最强烈的阻力。 尽管已经进行了25年以上的研究, 但已知的APN函数数量有限。 在本文中, 我们显示, 塔尼口( Taniguchi) 最近的构造至少提供了$\frac\ vvarphi( m) ⁇ 2\\\\ left\ lceil\ frac{ 2 ⁇ m+1\ 3m}\ right\ rice$, 在以 $2 ⁇ 2m =2m 表示 Euler 的 Toent 函数的限定字段中, 相当于 APN 函数的 APN 。 此外, 我们确定塔尼口 SPN 函数的自定义群 。