Assistive robotic manipulators are becoming increasingly important for people with disabilities. Teleoperating the manipulator in mundane tasks is part of their daily lives. Instead of steering the robot through all actions, applying self-recorded motion macros could greatly facilitate repetitive tasks. Dynamic Movement Primitives (DMP) are a powerful method for skill learning via teleoperation. For this use case, however, they need simple heuristics to specify where to start, stop, and parameterize a skill without a background in computer science and academic sensor setups for autonomous perception. To achieve this goal, this paper provides the concept of local, global, and hybrid skills that form a modular basis for composing single-handed tasks of daily living. These skills are specified implicitly and can easily be programmed by users themselves, requiring only their basic robotic manipulator. The paper contributes all details for robot-agnostic implementations. Experiments validate the developed methods for exemplary tasks, such as scratching an itchy spot, sorting objects on a desk, and feeding a piggy bank with coins. The paper is accompanied by an open-source implementation at https://github.com/fzi-forschungszentrum-informatik/ArNe
翻译:辅助机器人手臂对于残疾人士变得越来越重要。通过远程控制手臂完成日常任务是他们日常生活的一部分。与其通过每一个动作来控制机器人,应用自录的动作宏能够极大地简化重复性任务。 动态运动基元(DMP)是一种通过远程控制实现技能学习的有力方法。然而,对于这种情况,它们需要简单的启发式方法来指定启动,停止和参数化技能的位置,而不需要在计算机科学领域或使用传统感知器设置自主知觉。为了实现这个目标,本文提供了本地、全局和混合技能的概念,这些技能形成了一种模块化的基础,用于组合单手的日常生活任务。这些技能是隐含指定的,用户可以轻松地通过基本的机器人手臂自己编程。本文为机器人非特定实现提供了所有细节。实验验证了开发的方法对于例行任务的有效性,例如抓痒,整理桌面上的物品和用硬币养小猪存钱罐。该论文附带了一个开源实现,网址为 https://github.com/fzi-forschungszentrum-informatik/ArNe。