Milner (1984) defined a process semantics for regular expressions. He formulated a sound proof system for bisimilarity of process interpretations of regular expressions, and asked whether this system is complete. We report conceptually on a proof that shows that Milner's system is complete, by motivating, illustrating, and describing all of its main steps. We substantially refine the completeness proof by Grabmayer and Fokkink (2020) for the restriction of Milner's system to `1-free' regular expressions. As a crucial complication we recognize that process graphs with empty-step transitions that satisfy the layered loop-existence/elimination property LLEE are not closed under bisimulation collapse (unlike process graphs with LLEE that only have proper-step transitions). We circumnavigate this obstacle by defining a LLEE-preserving `crystallization procedure' for such process graphs. By that we obtain `near-collapsed' process graphs with LLEE whose strongly connected components are either collapsed or of `twin-crystal' shape. Such near-collapsed process graphs guarantee provable solutions for bisimulation collapses of process interpretations of regular expressions.
翻译:Milner(1984年) 定义了常规表达式的流程语义。 他为正常表达式的两种不同的进程解释设计了一个健全的验证系统, 并询问这个系统是否完整。 我们以概念方式报告一个证明, 证明Milner的系统通过激励、 插图和描述其所有主要步骤是完整的。 我们大幅改进Grabmayer 和 Fokkink (202020年) 的完整证明, 将 Milner 的系统限制为“ 1- 无” 常规表达式 。 作为关键的复杂因素, 我们认识到, 满足多层循环存在/ 消除属性 LLEE 的空步骤转换图不是在鼓励下封闭的( 与 LLEE 的类似进程图只有正确步骤过渡的流程图 ) 。 我们通过定义LLEEE 的“ 保留” 程序“ 内嵌入程序” 来绕开这个障碍。 我们从中获取“ 近于崩溃” 进程图, 与LEEEEEE 相连接密切的组件是崩溃的“ 或“ 双晶体” 形状的“ 。 这样的常规折式进程解释式表达式保证了常规的常规解式的“ 。