项目名称: 微电场-人工湿地修复水体重金属污染的效果和机理及优化调控

项目编号: No.51309053

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 水利工程

项目作者: 王宇晖

作者单位: 东华大学

项目金额: 25万元

中文摘要: 国内缺乏高效、生态环保的水体重金属污染修复方法。本项目创新性地将电化学处理与生态工程技术进行优势互补,提出微电场-人工湿地耦合系统,提升人工湿地对水体重金属污染的修复效果。通过研究施加微电场对湿地植物的生理指标和对重金属吸收特性的影响机理,得出适宜的电场条件和优势种;运用16sRNA基因末端限制性片段分析、磷脂脂肪酸和多聚酶链式反应-变性梯度凝胶电泳等微生物生态学技术,解析微电场对微生物群落结构影响,并阐释植物、微生物去除重金属的协同效应;分析施加微电场前后人工湿地基质、水相和沉积物中重金属元素的化学形态和含量,并结合常规水质指标分析,揭示微电场对基质最大吸附量和吸附-解吸平衡浓度的影响,探明耦合系统基质中重金属形态的时空变化及迁移转化规律;识别影响耦合系统去除重金属的关键因素,提出优化调控措施,获得最佳处理效果;成果将为微电场-人工湿地耦合系统修复水体重金属污染提供科学依据和技术支撑。

中文关键词: 微电场;人工湿地;重金属;植物生理;

英文摘要: In our country, effective and environmental methods for waterbody heavy metal restoration are deeply demanded. In this proposal, complementary advantages of electrochemical technique and constructed wetland has been creatively coupled to build a new treatment system called "micro-electric field constructed wetland" which aims to enhance the restoration of water body heavy metal pollution obtaining better ecological and economical effectiveness. Firstly, The impacts of applying micro-electric field on the wetland plant physiological processes and heavy metal absorption will be investigated to obtain suitable electric field conditions and dominant plant species. Furthermore, microbial ecological techniques such as Terminal Restriction Fragment Length Polymorphism (T-RFLP), Phospholipid Fatty Acid (PLFA) Analysis, Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) will be applied to analyze the impact of micro-electric field on the microfloral evolution and structure. Meanwhile, the synergism between wetland plant and microbial in removing heavy metal will be explored. Additionally, heavy metal speciation and quantity in substrate, water phase and deposits will be analyzed to reveal the changes of maximum absorption and absorption-desorption equilibrium brought by micro-electric field ap

英文关键词: micro-electric field;constructed wetlands;heavy metal;plant physiology;

成为VIP会员查看完整内容
0

相关内容

基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
12+阅读 · 2021年10月6日
专知会员服务
16+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
76+阅读 · 2020年12月6日
【经典书】操作系统导论,687页pdf
专知会员服务
170+阅读 · 2020年10月28日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
华为智选赛力斯 SF5 能否撑起华为之名?
ZEALER订阅号
0+阅读 · 2021年9月25日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
25+阅读 · 2021年3月20日
小贴士
相关主题
相关VIP内容
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
12+阅读 · 2021年10月6日
专知会员服务
16+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
32+阅读 · 2021年7月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
76+阅读 · 2020年12月6日
【经典书】操作系统导论,687页pdf
专知会员服务
170+阅读 · 2020年10月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员