In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain specific knowledge. Although intuitive, recent work in deep learning has shown this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multi-channel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories we "fade" the player trajectories. We find that this approach is superior to a traditional FFN model. By using gradient ascent to create images using an already trained CNN, we discover what features the CNN filters learn. Last, we find that a combined CNN+FFN is the best performing network with an error rate of 39%.
翻译:在本文中, 我们预测玩家从多试剂轨迹拍摄篮球的可能性。 以前对类似问题的处理方法以手工艺特征为中心, 以捕捉域内的具体知识。 虽然直观的, 最近的深层学习工作显示, 这种方法容易丢失重要的预测特征。 为了绕过这个问题, 我们展示了一个进化神经网络( CNN) 方法, 我们最初将多试剂行为作为图像来代表。 为了将篮球的对抗性质编码, 我们使用一个多通道图像, 我们然后将它输入CNN。 此外, 我们用它来捕捉我们“ 消灭” 玩家轨迹的时空方面。 我们发现这个方法优于传统的FFFNF模式。 通过使用梯度作为利用已经受过训练的CNN来创建图像的亮度, 我们发现CNN过滤器所学的特征。 最后, 我们发现一个合并的CNN+FFN是最佳的运行网络, 误率为39%。