The challenge in biomarker discovery using machine learning from omics data lies in the abundance of molecular features but scarcity of samples. Most feature selection methods in machine learning require evaluating various sets of features (models) to determine the most effective combination. This process, typically conducted using a validation dataset, involves testing different feature sets to optimize the model's performance. Evaluations have performance estimation error and when the selection involves many models the best ones are almost certainly overestimated. Biomarker identification with feature selection methods can be addressed as a multi-objective problem with trade-offs between predictive ability and parsimony in the number of features. Genetic algorithms are a popular tool for multi-objective optimization but they evolve numerous solutions thus are prone to overestimation. Methods have been proposed to reduce the overestimation after a model has already been selected in single-objective problems, but no algorithm existed capable of reducing the overestimation during the optimization, improving model selection, or applied in the more general multi-objective domain. We propose DOSA-MO, a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation. DOSA-MO adjusts the expectation of the performance during the optimization, improving the composition of the solution set. We verify that DOSA-MO improves the performance of a state-of-the-art genetic algorithm on left-out or external sample sets, when predicting cancer subtypes and/or patient overall survival, using three transcriptomics datasets for kidney and breast cancer.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2020年9月25日
专知会员服务
54+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
26+阅读 · 2020年2月21日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员