Systems with stochastic time delay between the input and output present a number of unique challenges. Time domain noise leads to irregular alignments, obfuscates relationships and attenuates inferred coefficients. To handle these challenges, we introduce a maximum likelihood regression model that regards stochastic time delay as an "error" in the time domain. For a certain subset of problems, by modelling both prediction and time errors it is possible to outperform traditional models. Through a simulated experiment of a univariate problem, we demonstrate results that significantly improve upon Ordinary Least Squares (OLS) regression.
翻译:输入和输出之间有随机时间延迟的系统带来了一些独特的挑战。 时间域噪音导致不规则的对齐、 模糊关系和降低推断系数。 为了应对这些挑战, 我们引入了最大可能性的回归模型, 将随机时间延迟视为时间域中的“ 危险 ” 。 对于某些组问题, 通过模拟预测和时间错误, 有可能超越传统模型。 通过模拟的单体问题实验, 我们展示了在普通最小方块( OLS) 回归上显著改善的结果 。