We prove an optimal $\Omega(n^{-1})$ lower bound on the spectral gap of Glauber dynamics for anti-ferromagnetic two-spin systems with $n$ vertices in the tree uniqueness regime. This spectral gap holds for all, including unbounded, maximum degree $\Delta$. Consequently, we have the following mixing time bounds for the models satisfying the uniqueness condition with a slack $\delta\in(0,1)$: $\bullet$ $C(\delta) n^2\log n$ mixing time for the hardcore model with fugacity $\lambda\le (1-\delta)\lambda_c(\Delta)= (1-\delta)\frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^\Delta}$; $\bullet$ $C(\delta) n^2$ mixing time for the Ising model with edge activity $\beta\in\left[\frac{\Delta-2+\delta}{\Delta-\delta},\frac{\Delta-\delta}{\Delta-2+\delta}\right]$; where the maximum degree $\Delta$ may depend on the number of vertices $n$, and $C(\delta)$ depends only on $\delta$. Our proof is built upon the recently developed connections between the Glauber dynamics for spin systems and the high-dimensional expander walks. In particular, we prove a stronger notion of spectral independence, called the complete spectral independence, and use a novel Markov chain called the field dynamics to connect this stronger spectral independence to the rapid mixing of Glauber dynamics for all degrees.


翻译:在树独特性系统中, 我们证明是最佳的 $\ omega (n ⁇ - 1}) $ 。 因此, 模型满足独特性条件的混合时间限制如下 $delta\ in 0. 1 美元: $\ bulllet$ (\ delta) n% 2\ log n$ 混合时间, 用于在树独特性制度下, 以美元为单位的反地磁双螺旋的光谱差。 这个光谱差对所有人都保持着, 包括没有约束的, 最高度$\ delta( delta) $。 因此, 模型满足独特性条件的混合时间限制如下 $delta( del- delta) $ (\ del- talta) 最大值的 美元 。 以美元( del- tal- talx) 最高值為单位的离位模式, 以美元( del- tal_ tal_ dell_ dell_ dell_ drow) lax; lax lax lax lax a- delivern.

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Arxiv
0+阅读 · 2022年1月21日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Top
微信扫码咨询专知VIP会员