This paper investigates the problem of activity detection and channel estimation in cooperative multi-cell massive access systems with temporally correlated activity, where all access points (APs) are connected to a central unit via fronthaul links. We propose to perform user-centric AP cooperation for computation burden alleviation and introduce a generalized sliding-window detection strategy for fully exploiting the temporal correlation in activity. By establishing the probabilistic model associated with the factor graph representation, we propose a scalable Dynamic Compressed Sensing-based Multiple Measurement Vector Generalized Approximate Message Passing (DCS-MMV-GAMP) algorithm from the perspective of Bayesian inference. Therein, the activity likelihood is refined by performing standard message passing among the activities in the spatial-temporal domain and GAMP is employed for efficient channel estimation. Furthermore, we develop two schemes of quantize-and-forward (QF) and detect-and-forward (DF) based on DCS-MMV-GAMP for the finite-fronthaul-capacity scenario, which are extensively evaluated under various system limits. Numerical results verify the significant superiority of the proposed approach over the benchmarks. Moreover, it is revealed that QF can usually realize superior performance when the antenna number is small, whereas DF shifts to be preferable with limited fronthaul capacity if the large-scale antenna arrays are equipped.


翻译:本文研究了具有时相关性活动的合作式多小区大规模接入系统中的活动检测和信道估计问题,其中所有接入点(AP)都通过前传链路连接到中央单元。我们建议实施基于用户的AP协作以减轻计算负担,并引入广义滑动窗口检测策略以充分利用活动中的时序相关性。通过建立与因子图表示相关联的概率模型,我们从贝叶斯推理的角度提出了可扩展的动态压缩感知多测量向量广义近似消息传递(DCS-MMV-GAMP)算法。在其中,通过在空间-时间域中的活动之间执行标准消息传递来改进活动似然度,并采用GAMP进行高效的信道估计。此外,我们基于DCS-MMV-GAMP开发了基于量化转发(QF)和基于检测转发(DF)的两种方案,以适应有限的前传带宽容量场景,并在各种系统限制情况下进行评估。数值结果验证了所提出方法在各项基准测试中的显著优越性。此外,还发现,如果天线数量较少,则QF通常可以实现更优异的性能,而如果配备大规模天线阵列并且带宽容量有限,则DF可以成为首选。

0
下载
关闭预览

相关内容

【博士论文】集群系统中的网络流调度
专知会员服务
42+阅读 · 2021年12月7日
专知会员服务
55+阅读 · 2021年5月17日
专知会员服务
16+阅读 · 2021年2月17日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员