For an n-vertex directed graph $G = (V,E)$, a $\beta$-\emph{shortcut set} $H$ is a set of additional edges $H \subseteq V \times V$ such that $G \cup H$ has the same transitive closure as $G$, and for every pair $u,v \in V$, there is a $uv$-path in $G \cup H$ with at most $\beta$ edges. A natural generalization of shortcut sets to distances is a $(\beta,\epsilon)$-\emph{hopset} $H \subseteq V \times V$, where the requirement is that $H$ and $G \cup H$ have the same shortest-path distances, and for every $u,v \in V$, there is a $(1+\epsilon)$-approximate shortest path in $G \cup H$ with at most $\beta$ edges. There is a large literature on the tradeoff between the size of a shortcut set / hopset and the value of $\beta$. We highlight the most natural point on this tradeoff: what is the minimum value of $\beta$, such that for any graph $G$, there exists a $\beta$-shortcut set (or a $(\beta,\epsilon)$-hopset) with $O(n)$ edges? Not only is this a natural structural question in its own right, but shortcuts sets / hopsets form the core of many distributed, parallel, and dynamic algorithms for reachability / shortest paths. Until very recently the best known upper bound was a folklore construction showing $\beta = O(n^{1/2})$, but in a breakthrough result Kogan and Parter [SODA 2022] improve this to $\beta = \tilde{O}(n^{1/3})$ for shortcut sets and $\tilde{O}(n^{2/5})$ for hopsets. Our result is to close the gap between shortcut sets and hopsets. That is, we show that for any graph $G$ and any fixed $\epsilon$ there is a $(\tilde{O}(n^{1/3}),\epsilon)$ hopset with $O(n)$ edges. More generally, we achieve a smooth tradeoff between hopset size and $\beta$ which exactly matches the tradeoff of Kogan and Parter for shortcut sets (up to polylog factors). Using a very recent black-box reduction of Kogan and Parter, our new hopset implies improved bounds for approximate distance preservers.


翻译:对于正相反方向的G$ = (V,E) 美元, 美元= 美元, 美元= 美元= 美元, 美元= 美元= 0. 美元= 0. 美元= 0. 美元= 0. 美元= 0. 美元= 美元, 美元= 美元= (V, E), 美元= 美元= 美元= 美元= 美元= 0. 美元= 0. 美元= 美元= 0. 美元= 美元= (V, 美元= 美元= 0. 美元= 美元= 美元= 0. 美元= 美元= 0. 美元= 美元= 0. 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元=

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月3日
The distance backbone of directed networks
Arxiv
0+阅读 · 2022年9月2日
Arxiv
0+阅读 · 2022年9月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员