We consider the community detection problem in sparse random hypergraphs. Angelini et al. (2015) conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic block model. We solve the positive part of the conjecture for the case of two blocks: above the threshold, there is a spectral algorithm which asymptotically almost surely constructs a partition of the hypergraph correlated with the true partition. Our method is a generalization to random hypergraphs of the method developed by Massouli\'{e} (2014) for sparse random graphs.
翻译:我们从稀有随机高射线中考虑社区探测问题。 Angelini等人(2015年)推测,在高射速切片区块模型产生的稀薄高射线中,社区探测模型参数存在一个尖锐的临界值。我们解决了两个区块的假设的正面部分:在临界值之上,有一种光谱算法几乎可以肯定地构建高射线与真实分区的分隔线。我们的方法是对Massouli\'{e}(2014)为稀有随机图表开发的随机高射线方法的概括。