Managing models in a consistent manner is an important task in the field of Model-Driven Engineering (MDE). Although restoring and maintaining consistency is desired in general, recent work has pointed out that always strictly enforcing consistency at any point of time is often not feasible in real-world scenarios, and sometimes even contrary to what a user expects from a trustworthy MDE tool. The challenge of tolerating inconsistencies has been discussed from different viewpoints within and outside the modelling community, but there exists no structured overview of existing and current work in this regard. In this paper, we provide such an overview to help join forces tackling the unresolved problems of tolerating inconsistencies in MDE. We follow the standard process of a Systematic Literature Review (SLR) to point out what tolerance means, how it relates to uncertainty, which examples for tolerant software systems have already been discussed, and which benefits and drawbacks tolerating inconsistencies entails. Furthermore, we propose a tool-chain that helps conducting SLRs in computer science and also eases the reproduction of results. Relevant meta-data of the collected sources is uniformly described in a textual modelling language and exported to the graph database Neo4j to query aggregated information.


翻译:以一致的方式管理模型是模型开发工程领域的一项重要任务。虽然总的来说需要恢复和保持一致性,但最近的工作表明,在现实世界的情景中,始终严格地在任何时刻执行一致性往往不可行,有时甚至与用户对可靠的模型开发工具的期望背道而驰。从建模界内外的不同观点讨论了容忍不一致的挑战,但对这方面的现有和当前工作没有结构化的概览。在本文件中,我们提供了这样的概览,以帮助联合各种力量,解决MDE中容忍不一致的未决问题。我们遵循系统文学审查的标准进程,指出容忍度意味着什么,它与不确定性有什么关系,宽容软件系统的例子已经讨论过,容忍不一致的优点和缺点意味着什么。此外,我们提出一个工具链,帮助在计算机科学方面开展SRL,并便利复制结果。所收集的源的相关元数据在文本模拟语言中统一描述,并出口到图表数据库Neo4j,以查询汇总信息。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月21日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员