Analysing 88 sources published from 2011 to 2021, this paper presents a first systematic review of the computer vision-based analysis of buildings and the built environments to assess its value to architectural and urban design studies. Following a multi-stage selection process, the types of algorithms and data sources used are discussed in respect to architectural applications such as a building classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. This reveals current research gaps and trends, and highlights two main categories of research aims. First, to use or optimise computer vision methods for architectural image data, which can then help automate time-consuming, labour-intensive, or complex tasks of visual analysis. Second, to explore the methodological benefits of machine learning approaches to investigate new questions about the built environment by finding patterns and relationships between visual, statistical, and qualitative data, which can overcome limitations of conventional manual analysis. The growing body of research offers new methods to architectural and design studies, with the paper identifying future challenges and directions of research.
翻译:本文件分析了2011年至2021年公布的88种来源,对建筑和建筑环境的计算机远景分析进行了首次系统审查,以评估其对建筑和城市设计研究的价值,经过多阶段选择过程后,讨论了建筑应用,如建筑分类、详细分类、定性环境分析、建筑条件调查和建筑价值估计等建筑应用所使用的算法和数据源类型,揭示了目前的研究差距和趋势,并突出了研究目标的两大类:第一,使用或优化建筑图像数据计算机远景分析方法,从而帮助将视觉分析的耗时、劳动密集型或复杂任务自动化;第二,探讨机器学习方法在方法上的好处,通过寻找视觉、统计和定性数据之间的模式和关系,调查关于建筑环境的新问题,从而克服常规手工分析的局限性;越来越多的研究提供了建筑和设计研究的新方法,文件确定了未来研究的挑战和方向。