Hyperbolic geometry, a Riemannian manifold endowed with constant sectional negative curvature, has been considered an alternative embedding space in many learning scenarios, \eg, natural language processing, graph learning, \etc, as a result of its intriguing property of encoding the data's hierarchical structure (like irregular graph or tree-likeness data). Recent studies prove that such data hierarchy also exists in the visual dataset, and investigate the successful practice of hyperbolic geometry in the computer vision (CV) regime, ranging from the classical image classification to advanced model adaptation learning. This paper presents the first and most up-to-date literature review of hyperbolic spaces for CV applications. To this end, we first introduce the background of hyperbolic geometry, followed by a comprehensive investigation of algorithms, with geometric prior of hyperbolic space, in the context of visual applications. We also conclude this manuscript and identify possible future directions.
翻译:在许多学习场景中,如自然语言处理、图形学习等,具有常数分段负曲率的黎曼流形——超几何被视为替代的嵌入空间,因为其具有编码数据分层结构(如不规则图形或树状数据)的有趣特性。最近的研究证明,这样的数据层次结构也存在于视觉数据集中,并研究了在计算机视觉(Computer Vision,简称 CV)环境中超几何形式的成功实践,涵盖从经典的图像分类到高级模型自适应学习。本文首次阐述了在 CV 应用中超几何空间的最新文献综述,介绍了超几何几何本质,并对具有超几何空间几何先验的算法在视觉应用中的综合研究进行了全面调查。最后本文总结,指出可能的未来方向。