The realization function of a shallow ReLU network is a continuous and piecewise affine function $f:\mathbb R^d\to \mathbb R$, where the domain $\mathbb R^{d}$ is partitioned by a set of $n$ hyperplanes into cells on which $f$ is affine. We show that the minimal representation for $f$ uses either $n$, $n+1$ or $n+2$ neurons and we characterize each of the three cases. In the particular case, where the input layer is one-dimensional, minimal representations always use at most $n+1$ neurons but in all higher dimensional settings there are functions for which $n+2$ neurons are needed. Then we show that the set of minimal networks representing $f$ forms a $C^\infty$-submanifold $M$ and we derive the dimension and the number of connected components of $M$. Additionally, we give a criterion for the hyperplanes that guarantees that all continuous, piecewise affine functions are realization functions of appropriate ReLU networks.


翻译:浅 ReLU 网络的实现功能是一个连续的和零星的折叠函数 $f:\mathbb R ⁇ d\ to\ mathbb R$, 域名$\mathbb R ⁇ d} 被一组一美元高空飞机分割成以美元为折合金的单元格。 我们显示, 美元的最低代表值是美元, 美元+1美元或美元+2美元的神经元, 我们对这三种情况都有特征。 在特定情况下, 输入层是一维的, 最小代表值总是在最多为n+1美元的神经元使用, 但在所有较高维环境中, 都存在需要n+2美元的神经元的函数。 然后, 我们显示, 代表美元为 美元的最小网络组构成 $C ⁇ inty- submany $M$, 我们从中得出维度和连接的元元数。 此外, 我们给出一个超标准, 用于超标准, 保证所有连续的、 直方形的连接功能是适当的RELU 网络的实现功能。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员